

UCSWCD NEWSLETTER 2026

5 Park Lane,
Highland, NY 12528
(845) 883-7162 X3

Protecting the natural resources of
Ulster County since 1965

Board Of Directors

Leonard Tantillo
Chairman
Farm Bureau
Representative

Sarah Van Nostrand
Secretary / Treasurer
Grange Representative

James Delaune
Vice-Chairman
Member-At-Large

Robert Davenport
Member-At-Large

Fred Wilklow
Member-At-Large

Herbert Litts, III
Legislative Representative

Kathy Nolan
Legislative Representative

UCSWCD Staff

Jake Wedemeyer
Executive Director
CCA, CPESC

Christine DeGroodt
Program Assistant

Cooper Hernsdorf
Technician
Certified Arborist

Amanda Sandor
Technician

Max Garfinkle
Ashokan Basin Project Manager

Bobby Taylor
CSBI Program Coordinator
NYSESCCP

Mark Tollefson
Watershed Technician

Gabriel Bonse
Watershed Technician

In This Issue

- District Highlights
 - *The Year in Review...*
 - Annual Bareroot Seedling Sale
 - Soil Group Worksheets
 - Envirothon 2025
- New Staff Bios
 - *AWSMP Welcomes New Stream Project Manager*
 - *UCSWCD Welcomes New District Technician*
- *Broadstreet Hollow - Stream Restoration Project, Shandaken, NY*
- *Pollinator-Friendly Plantings Strengthen Riparian buffers in the Ashokan Watershed*
- *Pasture Health: Two Ulster County Farms Commit to Improving Pasture Management*
- *Reading a River Through Pebbles*
- *The War Against Knotweed*
- *Coming Together to Help Local Farms and Improve Ulster County Waterways*
- *Farm Service Agency Information*
- *NRCS 5 Steps to Assistance*

The Year in Review....

2025 was a whirlwind year. Everyone I have spoken to feels the same way. The staff and I really hustled and accomplished a lot in a short period of time, such as completing six agricultural best

management practices, ranging from farm fuel tank upgrades to irrigation water efficiency projects. We completed two riparian planting projects, encompassing over 2,500 linear feet, helping to protect valuable agricultural soils.

Our soil health and equipment rental programs have expanded to include a 12-foot no-till drill, a row mulcher, (which saves farmers days in labor and is effective for soil erosion and weed control), and a 6-ton lime spreader. More farmers have enrolled in our local cover crop program and our 7 foot and 12-foot no-till drills are seeing more use.

What is most important are our relationships with the farmers, the residents of Ulster County, municipalities and our project partners. Solid relationships, collaboration, listening to each other and a kind approach goes a long way. I feel optimistic about 2026. Wishing everyone a happy, healthy and safe New Year.

Sincerely, Jake

Annual Bareroot Seedling Sale

We are now accepting orders for our tree and shrub sale. We offer a variety of native species in bundles as well as wildlife boxes, tree tubes, and fertilizer tablets. Orders should be placed prior to March 20th and can be picked up in either New Paltz or Kingston. Visit our website to learn more and place your order today!

SOIL GROUP WORKSHEETS

In order to qualify for the 2026 tax season, soils group worksheets will need to be submitted to your Town's Assessor by March 1, 2026.

Please contact your assessor first to see if your land qualifies. If it does, the District will prepare the Soils Group Worksheet.

Cost is \$40 per parcel.

If you need to come to the office, please call first at (845) 883-7162, ext. 3 to schedule an office visit.

Envirothon 2025

Congratulations Mount Academy of Esopus on their incredible achievements this past year in the Envirothon competitions! After winning the New York State competition in May, the Mount Academy team traveled to Calgary, Alberta for the 36th International Envirothon. They competed against more than 50 teams from Canada, China, and the United States, placing third overall!

AWSMP Welcomes New Stream Project Manager

The Ulster County Soil and Water Conservation District has refilled the vacant District Stream Project Manager position with the Ashokan Watershed Stream Management Program (AWSMP).

Max Garfinkle joined the program in May bringing over 15 years of experience in natural resource management, habitat restoration, and wildlife conservation. He previously worked with the New York State Office of Parks, Recreation and Historic Preservation, where he led a team focused on large-scale habitat restoration projects throughout the Palisades Region.

Max's work combined in-house and consultant-led efforts to restore wetlands and upland habitats to bolster keystone wildlife species and rebuild native ecological communities.

Originally from the Hudson Valley, Max is passionate about protecting the region's natural resources. He has worked with municipalities to administer environmental codes—from wetlands regulations to timber harvesting activities and stormwater management—and has always aimed to balance land use with ecological protection. Earlier in Max's career, he worked seasonally with land trusts in coastal Maine and New Hampshire on land stewardship and land management projects, as well as with NY Audubon in New York. Max earned a Bachelor of Science in Environmental Conservation from the University of New Hampshire and maintains certifications as a commercial pesticide applicator and drone operator.

In his free time, Max enjoys hiking, backpacking, bird-watching, gardening, bee-keeping, and working on his home. Max was drawn to working in the Catskills because of the new challenge it would provide. Max said, "The most exciting thing for me about joining a stream management program is the opportunity it gives to not only serve the natural world, through restoration and management work, but also the local communities that make up the watershed as well. It is a unique intersection between people and ecosystems that I am grateful to be a part of."

Max looks forward to meeting residents and watershed stakeholders.

*Leslie Zucker, Program Leader
Ashokan Watershed Stream Management Program
Cornell Cooperative Extension | Ulster County*

UCSWCD Welcomes New District Technician

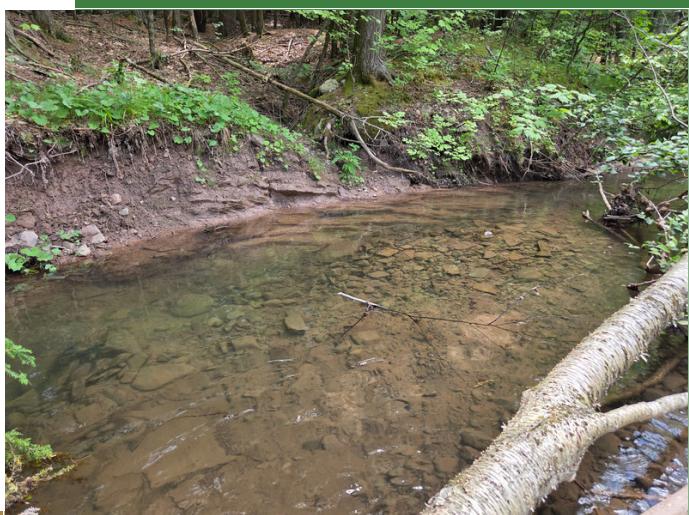
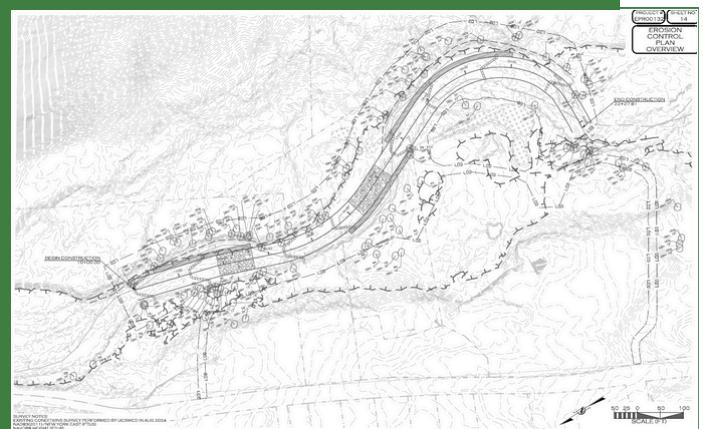
Amanda Sandor is originally from New Jersey but her favorite place has always been her grandparent's cabin in Prattsville. This inspired her and her partner to move from Pennsylvania to the Hudson Valley in September.

She has experience in Integrated Pest Management and treework, wetland restoration, volunteer management and most recently reviewing erosion control plans and regulating active earth disturbance sites.

In her free time, Amanda serves as Vice Chair of the Sawkill Watershed Community Advisory Council. Her hobbies include hiking, crafting, and spending time with her dog, Odie.

Broadstreet Hollow - Stream Restoration Project, Shandaken, NY

Broadstreet Hollow is a tributary to the Esopus Creek which can respond quickly during heavy rain events. When flows rise during and after weather events, bank erosion can increase and fine sediments can be mobilized, contributing to turbidity downstream. In parts of the project reach, erosion has exposed very fine, easily eroded soils, which can be transported during storm flows and affect water quality, which can have a cascade of negative effects on this aquatic system.



The Broadstreet Hollow Stream Restoration Project is intended to address these issues at their source. The project's purpose is to reduce ongoing erosion, improve channel stability

during high flows, and protect water quality flowing into the Ashokan Reservoir and its major tributary, while maintaining and improving aquatic and riparian habitat.

The project focuses on a segment of Broadstreet Hollow and its adjacent floodplain that has shown recurring erosion and channel instability over time. The design approach is not to "lock" the stream in place, but to help it function more naturally and safely by reducing erosive pressure on vulnerable areas and providing space for floodwaters to spread out and lose energy.

Proposed work is expected to include targeted channel adjustments to shift concentrated flow away from vulnerable banks and adjacent slopes; floodplain and bench features that allow high flows to spread out, slow down, and reduce erosive force; and in-stream rock and wood features that manage slope and stream energy while adding habitat structure. Banks would be stabilized using natural materials and vegetation, including toe wood and native plantings to strengthen the stream corridor over time.

Project development also considers site constraints such as access, utilities, nearby residences and protection of wetlands and other sensitive resources. The intent is to meet project goals for both the stream and the communities it serves.

At a planning level, construction is anticipated to take a few months beginning in the summer of 2026. Because this is trout water, in-stream work is planned within a seasonal window intended to avoid sensitive spawning and incubation periods.

After construction, the project will be documented and monitored to evaluate performance over time. Follow-up typically includes checking bank stability, assessing how in-stream features perform during higher flows, tracking vegetation establishment, and monitoring invasive species response. The long-term outcome is a stream corridor that better withstands storm events, delivers less sediment downstream, and supports a healthier riparian and aquatic system.

Max Garfinkle

Pollinator-Friendly Plantings Strengthen Riparian Buffers in the Ashokan Watershed

Across the Ashokan Watershed, riparian buffer restoration through the Catskill Streams Buffer Initiative (CSBI) program has long been a cornerstone of protecting water quality, stabilizing streambanks, and supporting healthy aquatic ecosystems. As these projects continue to evolve, an added layer of benefit is being intentionally woven into new plantings. The inclusion of pollinator friendly native species is increasingly being added to riparian restoration projects to enhance project benefits.

Riparian buffers, the vegetated areas along streams and rivers, play a critical role in filtering runoff, reducing erosion, and shading waterways to maintain cooler water temperatures. Traditionally, restoration efforts have focused solely on trees and shrubs selected primarily for root strength, flood tolerance, and bank stabilization. While these goals remain front and center, recent restoration efforts are expanding plant palettes to include flowering native herbaceous cover and shrubs that provide nectar, pollen, and habitat for pollinators.

Pollinators like bees, moths and hummingbirds are vital to both natural ecosystems and agricultural productivity. Many of our native pollinator species have experienced population declines due to habitat loss, pesticide/herbicide exposure, and lack of floral diversity in the landscape. Riparian corridors offer a unique opportunity to address the decline by transforming streamside lawns into native vegetated pollinator buffets and creating protected habitat that connects forests, fields, wetlands, and streams throughout the watershed.

In the watershed, species like swamp milkweed, blue vervain, Joe-Pye weed, New England aster and goldenrods are being integrated alongside willows, dogwood, witch-hazel and maples. These plants are well adapted to riparian conditions, tolerant of periodic flooding, and bloom at different times throughout the growing season, ensuring a steady food source from spring through fall. The enhanced buffers are not only functional, but vibrant with life and activity.

The benefits expand beyond pollinators. Increased plant diversity improves soil structure, enhances resilience to invasive species, and supports other wildlife that rely on insects for food. From a water quality perspective, which is important given that the funding for buffer restoration is driven by New York City's reliance on clean water, a lush, layered mix of native plants slows runoff, increases infiltration and strengthens the buffer's ability to trap sediment before it reaches streams.

An often-overlooked advantage of pollinator friendly buffers is landowner acceptance and long-term maintenance. A restored buffer filled with colorful blooms and visible wildlife becomes something to appreciate rather than avoid. After all, who wants to mow pretty flowers? Attractive plantings help discourage mowing of streamside areas, increasing the likelihood that restorations will remain intact and effective into the future.

As the District and Ashokan Watershed Stream Management Program continues to work with landowners and watershed communities, pollinator friendly riparian buffers represent a win-win approach, protecting water quality, supporting biodiversity and enhancing the beauty of the Ashokan Watershed landscape. These projects demonstrate that conservation practices can be practical and inspiring, providing tangible benefits to the watershed and the communities that make it up.

By restoring streamside areas with intention and diversity, we are not just stabilizing banks, we are cultivating healthier ecosystems and more resilient communities from the ground up. For more information about riparian buffer restoration efforts in the county contact the Ulster County Soil & Water Conservation District office.

Bobby Taylor

Pasture Health: Two Ulster County Farms Commit to Improving Pasture Management

Prescribed Rotational Grazing

Agricultural conservation is alive and well in Ulster County. Our office has recently assisted two Ulster County farms in the planning and installation of permanent livestock fencing to facilitate the implementation of prescribed rotational grazing.

Rotational grazing involves the near constant rotation of livestock through a series of small pastures (paddocks). Rotational grazing is attributed with promoting more productive pastures, improving soil health, and reducing soil loss due to erosion. One common misconception about this management strategy is that it requires more land than traditional grazing.

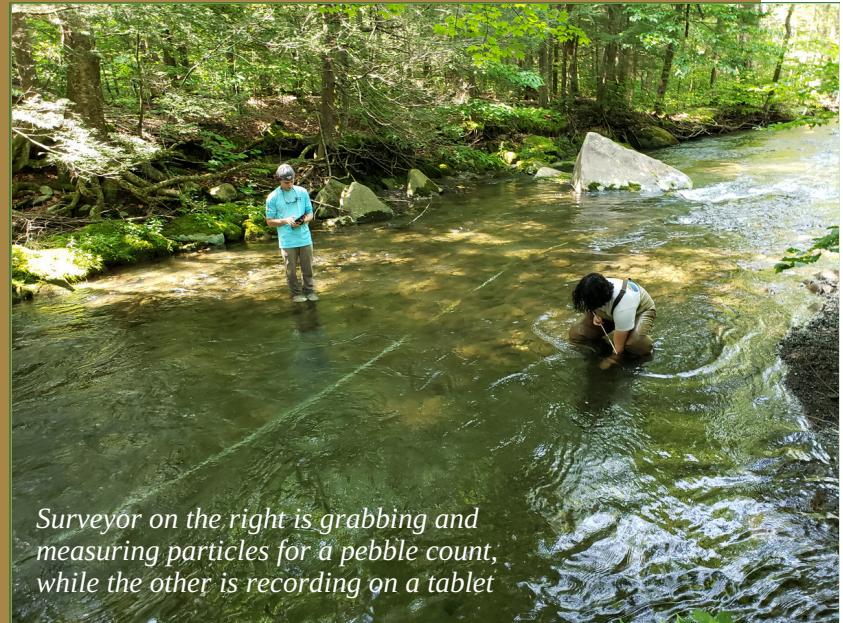
In fact, the opposite is true. Allowing animals to graze paddocks intensively for a short time followed by resting the paddock, this strategy takes advantage of the natural growth patterns of common grass species and results in higher yielding forages. Higher yielding plants require less acreage.

AEM (Agricultural Environmental Management)

Funding for these two projects, as well as five other ag conservation projects completed this year, was secured through New York State Ag and Market's Agricultural Environmental Management Program. The AEM program is designed to identify and address potential natural resource concerns on farmland in New York.

Technical assistance can be provided in the form of site visits, guidance, and conservation planning from districts like UCSWCD. Funding is available to implement conservation practices that can address identified resource concerns. A conservation plan must be completed before applying for State cost share funding.

Ulster County Soil and Water has participated in the AEM program for over two decades and worked alongside countless farmers dedicated to putting conservation practices into use. We give many thanks to all of our partners and look forward to meeting many more in the future.


Cooper Hernsdorf

Reading a River Through Pebbles

If you have ever walked along or in a stream, you have probably noticed a variety of rocks and pebbles along the streambed and banks. The size and amount of material that is present provides clues about the stream itself. In stream assessment and restoration, two methods for studying the bed materials are pebble counts and bar samples.

A pebble count is a repeatable survey of streambed material collected from a defined reach. Three types of pebble counts are used: representative, active riffle, and glide. Active riffle and glide pebble counts collect 100 samples within a single stream feature. Representative pebble counts collect 10 samples from 10 different features within a defined study reach. To avoid bias, samples are collected at even spacing without looking down, measuring the first one they touch.

Bar samples are collected on the inside bend of a point bar, located midway between the deepest part of the active channel and top of the bar.

Surveyor on the right is grabbing and measuring particles for a pebble count, while the other is recording on a tablet

This involves excavating a pit to a depth that is twice the diameter of the largest surface particle. All material removed from the pit is then sorted by size and then weighed to produce a sediment distribution curve.

These surveys are important because sediment size show flow conditions and channel stability. They also provide insight into bed-load transport during high-flow events. These events provide the greatest amount of change, responsible for most erosion, deposition, and long-term channel change within a river system.

The largest particle sizes measured represent the material that a typical high flow can mobilize. This information is needed for stream design, as it defines local stream energy and ensures that rocks placed during restoration is large enough to remain stable and protect the stream from excess erosion.

Certain stream types are expected to have a characteristic mix of particle sizes within the channel. When survey results show a disproportionately high amount of either very small or very large material, it may indicate that the stream is no longer in equilibrium. For example, a high percentage of clay, sand, and small cobbles often reflects unstable channel conditions, leading to increased turbidity and degraded water quality.

By reading these sediment patterns through pebble counts and bar samples, data driven decisions can be made about whether restoration is needed. Repeating these surveys over time also allow us to track the river responding to natural events and upstream disturbances.

Mark Tollefson

The War on Knotweed

AWSMP Technician using a weedwhacker on a Knotweed monoculture

What is Knotweed?

Japanese Knotweed (*Reynoutria japonica*) is a fast-growing, invasive species that has caused significant ecological issues to the streams of Ulster County. It aggressively multiplies through underground rhizomes, allowing for it to outcompete our native plants, and damage local ecosystems.

This is evident along the streams of the Ashokan Watershed, where Japanese Knotweed is abundant. The presence of Knotweed not only disturbs the vegetation, but it also greatly impacts stream stability. The thin fibrous roots of Knotweed do not hold sediment material together well. This often leads to bank erosion in high water scenarios. Throughout the past year, the Ashokan Watershed Stream Management Program, and Ulster County Soil and Water Conservation District have employed many means of knotweed control.

How AWSMP has Combatted Knotweed

In 2025, AWSMP have used various control methods on Knotweed sites. Mowing, cutting, and herbicide application have been a means to control the spread of Knotweed and limit the ability for it to disperse.

Large Knotweed colony that has taken over a local tributary

This is often times used in conjunction with an application of glyphosate from a licensed herbicide applicator. The glyphosate is able to effectively kill the Knotweed and prevent the further spread of this invasive plant.

Is Glyphosate Application Worth It?

Glyphosate is often considered worth using on Japanese Knotweed because it is the most effective and reliable way to kill the plant's extensive underground rhizome system. Knotweed stores large energy reserves below ground, and glyphosate is a systemic herbicide, meaning it is absorbed by the leaves or stems and transported throughout the entire plant, including the roots. This makes it far more effective than surface treatments or cutting alone, which usually only provide temporary control. Although glyphosate application may be controversial, it is by far the most effective means of controlling the damages done by this invasive species.

Gabe Bonse

Coming Together to Help Local Farms and Improve Ulster County Waterways

Among the many projects completed by UCSWCD this past year, two riparian buffer projects really highlight the collaborative nature of watershed work. Our office partnered with several groups to plan, prepare and implement these buffers on two local farms.

Cunuco Farms

Owned by Hector Tejada and Maggie Dobberstein, Conuco Farm is a mixed veggie operation in the Town of New Paltz. Located along the Wallkill River, the farm experiences its share of flooding and erosion. The main goals of the buffer project were to suppress invasive Mugwort (*Artemisia vulgaris*) using non-chemical methods, improve water quality entering the Wallkill, reduce erosion, and provide habitat for pollinators and wildlife.

In partnership with Orange County Land Trust and the Hudson River Estuary Trees for Tribs program, a plan was created for the 138,000-square foot buffer. The UCSWCD 7-foot no-till seed drill was utilized to prepare the site for its first stage - planting Buckwheat to outcompete the Mugwort and other invasives.

This cover crop was later mowed and the no-till drill was again used to prepare a 14-foot wide section of the site for seeding with a pollinator mix. The remainder of the site was planted with over 700 native trees and shrubs, following 2,300 linear feet of the Wallkill. Planting was completed over two days with additional assistance and volunteer support from the Wallkill River Watershed Alliance.

Saunderskill Farm

This historic farm has been operating continuously since 1680, through 12 generations of the Schoonmaker family. Located in Accord, their fields are scattered along the Rondout Creek and produce grain corn, a variety of vegetables, and flowers. UCSWCD worked with the Schoonmakers and Hudson River Estuary Trees for Tribs to establish a 9,000-square foot buffer.

The project is located between a corn field and the Rochester Creek, a tributary of the Rondout. The primary goals of the project were to manage invasive Mugwort and Japanese Knotweed as well as reduce active erosion along the streambank.

The planting plan for this project included live staking directly into the stream bank, followed by planting potted shrubs close to top of bank, and finally planting trees slightly farther out from the creek. This approach is referred to as the "Three Zone" method and creates a healthy buffer, more likely to withstand flooding and provide a high level of protection for the stream.

Our office is happy to have facilitated these collaborative efforts between agencies and community members to protect natural resources. We hope to provide further assistance to other Ulster County farmers and landowners in the year to come!

Amanda Sandor

FARM SERVICE AGENCY

The Millbrook Office Can Assist With:

- Disaster Assistance & Safeguards
- Conservation Programs
- Farm Storage Facility Loans
- Price Support Programs
- Commodity Loans
- GPS & Aerial Photography Farm Data
- Youth Loans
- Low Interest Farm Loans: Operating & Mortgages
- Low Interest Microloans - up to \$50,000


www.fsa.usda.gov/ny

Millbrook USDA Service Center

845-605-6041 | chelsea.migliorelli@usda.gov

USDA is an equal opportunity provider, employer and lender.

Get Started with NRCS

Do you farm or ranch and want to make improvements to the land that you own or lease?

Natural Resources Conservation Service offers technical and financial assistance to help farmers, ranchers and forest landowners.

1 Planning

To get started with NRCS, we recommend you stop by your local NRCS field office.

We'll discuss your vision for your land.

NRCS provides landowners with free technical assistance, or advice, for their land. Common technical assistance includes: resource assessment, practice design and resource monitoring. Your conservation planner will help you determine if financial assistance is right for you.

2 Application

We'll walk you through the application process. To get started on applying for financial assistance, we'll work with you:

- To fill out an AD 1026, which ensures a conservation plan is in place before lands with highly erodible soils are farmed. It also ensures that identified wetland areas are protected.
- To meet other eligibility certifications.

Once complete, we'll work with you on the application, or CPA 1200.

Applications for most programs are accepted on a continuous basis, but they're considered for funding in different ranking periods. Be sure to ask your local NRCS district conservationist about the deadline for the ranking period to ensure you turn in your application in time.

USDA is an equal opportunity provider and employer.

3 Eligibility

As part of the application process, we'll check to see if you are eligible.

To do this, you'll need to bring:

- An official tax ID (Social Security number or an employer ID)
- A property deed or lease agreement to show you have control of the property; and
- A farm tract number.

If you don't have a farm tract number, you can get one from USDA's Farm Service Agency. Typically, the local FSA office is located in the same building as the local NRCS office. You only need a farm tract number if you're interested in financial assistance.

4 Ranking

NRCS will take a look at the applications and rank them according to local resource concerns, the amount of conservation benefits the work will provide and the needs of applicants.

5 Implementing

If you're selected, you can choose whether to sign the contract for the work to be done.

Once you sign the contract, you'll be provided standards and specifications for completing the practice or practices, and then you will have a specified amount of time to implement. Once the work is implemented and inspected, you'll be paid the rate of compensation for the work if it meets NRCS standards and specifications.

To find out more, go to: www.nrcs.usda.gov/GetStarted